Convergence of the Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems

نویسنده

  • Q. LI
چکیده

This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx error on the gradient is of order h log( 1 ¡h).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems

This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

The Analysis of Multigrid Algorithms for Nonconforming and Mixed Methods for Second Order Elliptic Problems

In this paper we consider multigrid algorithms for nonconforming and mixed nite element methods for second order elliptic problems on triangular and rectangular nite elements. We prove optimal convergence properties of the W-cycle multigrid algorithm and uniform condition number estimates for the variable V-cycle preconditioner. Lower order terms are treated, so our results also apply to parabo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010